Increasing Fatty Acid Oxidation Remodels the Hypothalamic Neurometabolome to Mitigate Stress and Inflammation
نویسندگان
چکیده
Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.
منابع مشابه
Fatty Acids, Antioxidants and Physical Activity in Brain Aging
Polyunsaturated fatty acids and antioxidants are important mediators in the central nervous system. Lipid derivatives may control the production of proinflammatory agents and regulate NF-κB activity, microglial activation, and fatty acid oxidation; on the other hand, antioxidants, such as glutathione and ascorbate, have been shown to signal through transmitter receptors and protect against acut...
متن کاملEffect of Jasmonic Acid on Physiological and Phytochemical Attributes and Antioxidant Enzymes Activity in Safflower (Carthamus tinctorius L.) under Water Deficient
Background: Safflower (Carthamus tinctorius L.), is an important medicinal plant of Asteraceae family, which is a rich source of pharmaceutically active compounds including phenols, flavonoids and fatty acids. In traditional medicine this plant has been used as an herbal medicine to treat various diseases. Objective: The aim of this study was to evaluate the role of jasmonic acid to protect saf...
متن کاملChronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice
The prevalence of nonalcoholic fatty liver disease (NAFLD) increases with increasing body mass index (BMI). However, approximately 40-50% of obese adults do not develop hepatic steatosis. The level of inflammatory biomarkers is higher in obese subjects with NAFLD compared to BMI-matched subjects without hepatic steatosis. We used a casein injection in high-fat diet (HFD)-fed C57BL/6J mice to in...
متن کاملInhibitory impacts of natural antioxidants (ascorbic and citric acid) and vacuum packaging on lipid oxidation in frozen Persian sturgeon fillets
This study was aimed to investigate effects of aqueous citric acid (CA) and ascorbic acid (AA) on lipid oxidation in comparison with effect of vacuum packaging in order to find better treatment to delay improper changes in the Persian sturgeon (Acipenser persicus) fillets during frozen storage due to lipid oxidation. In this study traditional packaging, vacuum packaging, ascorbic acid solutio...
متن کاملCultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.
Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7...
متن کامل